If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-300t+600=0
a = 16; b = -300; c = +600;
Δ = b2-4ac
Δ = -3002-4·16·600
Δ = 51600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51600}=\sqrt{400*129}=\sqrt{400}*\sqrt{129}=20\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-300)-20\sqrt{129}}{2*16}=\frac{300-20\sqrt{129}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-300)+20\sqrt{129}}{2*16}=\frac{300+20\sqrt{129}}{32} $
| (3/x+1)-(1/x-1)=4/1-x^2 | | 8388608^2=x | | 12x^2-10x=12x+20 | | 14+7x=2(−x+7)−36 | | 7x-9x2=5×-6 | | 2t+3=12 | | 2w+2(4w)=570 | | 2*3m÷4=0 | | 5x+16=42 | | 26=0.5x+34 | | 9/8 =12/p | | -4x(-2K)=0 | | -4×(-2k)=0 | | x-6=x+40 | | 9(x+1)=5(x-3) | | P(n)=0.4n+5.7 | | 8x-6(x-3)=4(4x-6) | | 90-10x+x=57 | | 3.2-4x=9.8-9x | | -2*6a=0 | | 2*6a=0 | | Y^4+5y′′+4y=0 | | 14+9x=74 | | 5n×12=0 | | 4(7x-13)=3(9x-14) | | -y=27 | | 3(3y+7)=5(2y+7) | | 5n*12=0 | | 3x+6-12=2x-2 | | (1/4x)-5=-6 | | 2(3y+7)=5(2y+17) | | 5m+5=6m-6 |